Package: conjurer 1.7.0

conjurer: A Parametric Method for Generating Synthetic Data

Generates synthetic data distributions to enable testing various modelling techniques in ways that real data does not allow. Noise can be added in a controlled manner such that the data seems real. This methodology is generic and therefore benefits both the academic and industrial research.

Authors:Sidharth Macherla [aut, cre]

conjurer_1.7.0.tar.gz
conjurer_1.7.0.zip(r-4.5)conjurer_1.7.0.zip(r-4.4)conjurer_1.7.0.zip(r-4.3)
conjurer_1.7.0.tgz(r-4.4-any)conjurer_1.7.0.tgz(r-4.3-any)
conjurer_1.7.0.tar.gz(r-4.5-noble)conjurer_1.7.0.tar.gz(r-4.4-noble)
conjurer_1.7.0.tgz(r-4.4-emscripten)conjurer_1.7.0.tgz(r-4.3-emscripten)
conjurer.pdf |conjurer.html
conjurer/json (API)
NEWS

# Install 'conjurer' in R:
install.packages('conjurer', repos = c('https://sidharthmacherla.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sidharthmacherla/conjurer/issues

On CRAN:

dummy-data-generatorsynthetic-datasynthetic-data-generationsynthetic-dataset-generationsynthetic-tabular-data

4.95 score 9 stars 3 scripts 312 downloads 11 exports 8 dependencies

Last updated 5 months agofrom:7aabe3eb09. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-winNOTENov 20 2024
R-4.5-linuxNOTENov 20 2024
R-4.4-winNOTENov 20 2024
R-4.4-macNOTENov 20 2024
R-4.3-winOKNov 20 2024
R-4.3-macOKNov 20 2024

Exports:buildCustbuildHierarchybuildIdbuildModelDatabuildNamesbuildNumbuildParetobuildPatternbuildProdextractDfgenTrans

Dependencies:askpasscurlhttrjsonlitemimeopensslR6sys

Introduction to conjurer

Rendered fromintroduction_to_conjurer.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-04-22
Started: 2020-01-07

Industry Example

Rendered fromindustry_example.Rmdusingknitr::rmarkdownon Nov 20 2024.

Last update: 2023-04-22
Started: 2023-04-22